

H2020-INFRAIA-2019-1

H2020-INFRAIA-2019-1

Europlanet 2024 RI has received funding from the European Union's Horizon 2020 Research and Innovation Programme under

Grant agreement no: 871149

Deliverable D10.8

Deliverable Title:	Tutorial on Machine Learning and Basic How To's
Due date of deliverable:	31/07/2023
Nature ¹ :	R
Dissemination level ² :	PU
Work package:	10
Lead beneficiary:	INAF
Contributing beneficiaries:	KNOW
Document status:	Final
Start date of project:	01 February 2020
Project Duration:	54 months

1. Nature: D

2. Dissemination level:

PU PP

RE

Co-ordinator:

Public Restricted to other programme participants (including the Commission Service)

Restricted to a group specified by the consortium (including the Commission Services)

СО

Prof Nigel Mason, University of Kent

Confidential, only for members of the consortium (excluding the Commission Services)

Links to Tutorials for all scientific cases and ML techniques used:

a. Mercury Surface Classification

https://github.com/epn-ml/MESSENGER-Mercury-Surface-Cassification-Unsupervised DLR/blob/master/notebooks/mascs classification tutorial.md

b. ICME Detection

https://github.com/epn-ml/EPSC2021-ICMEworkshop/blob/main/MachineLearningPipeline.ipynb

c. Mercury Boundary Crossing

https://github.com/epn-ml/EPSC2021-MercuryBoundaries-workshop

d. GMAP Deep Landforms

https://github.com/epn-ml/DeepLandforms/tree/main/Tutorial

e. IAP Boundary Crossings

https://github.com/epn-ml/Tutorial IAP Boundaries/blob/main/IAP Pipeline.ipynb

f. Pits

https://github.com/dlecorre387/Pit-Topography-from-Shadows/blob/master/scripts/PITS_tutorial.ipynb

g. Chorus Wave Segmentation

https://github.com/epn-ml/Chorus-Wave/tree/main/notebooks

h. GMAP mound detection

https://github.com/epn-ml/Workshop-GMAP

k. INAF spectral use case

https://github.com/epn-ml/spectral-analysis-planetary-minerals

We used machine learning to identify the spectral properties of minerals. This approach helps efficiently analyse complex and wide spectral information, making the process less time-consuming and improving accuracy.